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Comparative Performance and Porting Effort of HIP 
and CUDA for an Implicit Monte Carlo Code 

9/1/20 Los Alamos National Laboratory 

•  First off, this talk does not address the performance of the HIP porting 
effort 

• Monte Carlo transport is known to consume a large number of CPU 
cycles and I spend a lot of time thinking about this issue 

• Our mandate is to be able to run on new machines, my experience 
thus far is that porting takes more time than optimizing so plan 
accordingly 
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The CUDA port of the Jayenne IMC library performs 
well without much optimization 

9/1/20 Los Alamos National Laboratory 

• We ported our Monte Carlo transport code with CUDA 
•  The lion’s share of the work was isolating code to run on an 

accelerator 
– Monte Carlo naturally has a lot of potential code paths 
– Pull difficult code paths out, isolate core work functions 
– After that, removing host code from device functions (std library) took some 

time 
– Initial performance gains came from using shared memory, eliminating 

separable compilation and using constant memory for some data 
•  I heard about HIP as a solution for CUDA codes on El Capitan and 

was excited to try to qualitatively measure the effort 
– Was I excited for petty reasons? The short answer, is yes, yes I was 
– I made a decision for performance first, could I have my cake and eat it too? 

3 



NOTE: 
This is 
the lab 

color 
palette. 

HIP has some attractive features for a “basic” CUDA 
code 

9/1/20 Los Alamos National Laboratory 

• HIP generates code for AMD devices but is also a “thin layer” over 
CUDA for a “single-source” GPU solution 

• No need to set experimental CUDA flags for constexpr or thrust with 
lambda functions 

• Some features of Jayenne that make HIP a good fit (your mileage 
may vary) 
– Jayenne uses explicit memory management in CUDA (cudaMalloc, 

cudaFree) and not managed memory (under development in HIP) 
– No logic in Jayenne assumes a warp size (could be 64 in AMD devices) 
– No virtual functions inside the transport loop (not supported in HIP) 
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Some details of the port work: the easy parts 

9/1/20 Los Alamos National Laboratory 

•  Loaded the ROCM module, it put hipify-perl in my path and I ran 
– hipify-perl –i <file name> 

• Kernel launch and adding include files was the only change I would 
consider more advanced than “find_replace” 
– My thrust include paths and functions remained unchanged 

• As many codes do, I hide CUDA specific code behind Cmake 
configure time macros 

• No macros had to change, even the ones for constant texture memory 
•  I changed “#ifdef __NVCC__” type checks to “__HIPCC__” 
• No checks on __CUDA_ARCH__ in Jayenne so no ambiguity 

between device features 
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Some details of the port work: the hard parts that are 
related to how Jayenne works 

9/1/20 Los Alamos National Laboratory 

•  I saw a hipify-cmake script was also added to the path by ROCM 
– Main difference is changing the “find_package(CUDA)” command to HIP 
– Our CMake does not use the standard CMake “find_package(CUDA)” type 

approach, we instead enable CUDA as a language on a per project basis 
•  I only have three object files to make, let’s do it by hand! 

– Remove gcc flags (sanitize) 
– make VERBOSE=1 
– Change compiler in make line to “hipcc” 

• Our random number generator, Random123,  code make heavy use 
of platform specific intrinsics 
– Are you shocked that this isn’t very portable? 
–  Ignoring instrinisic optimizations, even turning on “__device__” decorators caused a 

problem 
– No portability solution would have solved this problem for me! 
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Some details of the port work: the parts you expect 
when using new tools 

9/1/20 Los Alamos National Laboratory 

• All complaints mentioned here are just to point out what does not “just 
work” in doing a HIP port 
– hipcc doesn’t accept –fopenmp flag in link phase (fixed in latest) 
– I ran into a bug in ROCprim with including some thrust functions  (fixed in 

latest) 
• ROCm uses the system gcc to build glibc, this caused problems in 

linking to my gcc code 
– This problem is fixed by specifying a gcc toolchain when using hipcc for 

compiling and linking 
• Our code does not currently compile with clang10+ and ROCm 3.5 on 

our system is clang11 
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A comparison of porting efforts: C++ to CUDA and 
CUDA to HIP 

9/1/20 Los Alamos National Laboratory 

•  There is still work to do, as I mentioned, I was not able to run 
performance comparisons 

•  I successfully ran my simple GPU tests that moves a particle with the 
core loop 

• A table with some rough numbers for the CUDA port based on the git 
commit history of Jayenne and the CDash dashboard  
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Port feature Date 
Start code reorganization 06/2017 
Separate GPU functions 06/2019 
First CUDA kernel call 11/2019 
Runs tstRW_Transporter 03/2020 
Passes all integration tests with GPU 08/2020 

HIP port 
is here 
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Conclusions 

9/1/20 Los Alamos National Laboratory 

• Of course, this comparison is not scientific in a number of ways 
– Measuring “effort” is inherently difficult 
– I’m not able to compare performance to CUDA yet 

•  That said, this port took a week of work 
– How long would it take to move to KOKKOS? I know where my loops are, I 

know where my memory needed on the device is, my code survives a pass 
with the NVCC compiler, maybe someone could tell me? 

•  The most valuable part of this work is knowing where the code is with 
respect to a HIP port 
– I can start having conversations about our CMake and how we expect HIP 

to work with it 
– Someone with more experience in compiler intrinsics can look at 

Random123 
•  It took me about a week of work to find out “where we are” 
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